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Circadian rhythms modulate many aspects of physiology. Knowl-
edge of the molecular basis of these rhythms has exploded in the
last 20 years. However, most of these data are frommodel organisms,
and translation to clinical practice has been limited. Here, we
present an approach to identify molecular rhythms in humans from
thousands of unordered expression measurements. Our algorithm,
cyclic ordering by periodic structure (CYCLOPS), uses evolutionary
conservation and machine learning to identify elliptical structure in
high-dimensional data. From this structure, CYCLOPS estimates the
phase of each sample. We validated CYCLOPS using temporally
ordered mouse and human data and demonstrated its consistency
on human data from two independent research sites. We used this
approach to identify rhythmic transcripts in human liver and lung,
including hundreds of drug targets and disease genes. Importantly,
for many genes, the circadian variation in expression exceeded
variation from genetic and other environmental factors. We also
analyzed hepatocellular carcinoma samples and show these solid
tumors maintain circadian function but with aberrant output.
Finally, to show how this method can catalyze medical translation,
we show that dosage time can temporally segregate efficacy from
dose-limiting toxicity of streptozocin, a chemotherapeutic drug. In
sum, these data show the power of CYCLOPS and temporal re-
construction in bridging basic circadian research and clinical medicine.

gene expression | biological rhythms | machine learning | autoencoder |
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Circadian rhythms are nearly ubiquitous in nature. In animals,
much of physiology and behavior is under circadian control.

Body temperature, hormonal rhythms, blood pressure, and locomo-
tor activity are just a few of the processes displaying daily rhythms. In
circadian model systems (e.g., cyanobacteria,Neurospora, Arabidopsis,
Drosophila, and mice), high-resolution time sampling is straightfor-
ward, and experiments show that a substantial fraction of the tran-
scriptome is under clock control. For example, in mice, a majority of
genes are clock regulated in at least 1 of 12 different organs (1).
Circadian rhythms are also critical for humans. Shift work-induced

circadian misalignment is associated with higher rates of metabolic,
cardiovascular, and neoplastic disease. Clinical experience suggests
time of day can have a marked effect on disease severity (2–4). In-
deed, the majority of the best-selling prescription drugs and World
Health Organization essential medicines target molecules that os-
cillate in mice (1). However, translation of these findings to clinical
medicine remains slow. How does human molecular physiology
change with circadian time? In mice, and presumably humans, cir-
cadian output genes are markedly different in each tissue. Obviously,
repeated sampling from most human organs is not possible. As a
result, we have limited ability to study human molecular rhythms and
relate them to either normal or disease physiology.
One approach is to analyze temporally annotated clinical

samples, where time of sample collection is recorded. There
are >1 million human gene expression samples in the National
Center for Biotechnology Information Gene Expression Omnibus

(GEO) repository. Unfortunately, the sample collection time is al-
most never reported. Ueda et al. (5) first used transcriptional “time-
stamping” to reconstruct the circadian phase of tissue samples from
mouse liver, and supervised learning methods continue to improve
(6, 7). However, supervised learning requires a training library of
samples with known circadian time. With the exception of blood (8,
9) and brain (10), temporally annotated human samples are lacking.
Although theoretically possible, scheduling people for internal organ
biopsies every 2 h for 2 d is both dangerous and impractical.
Alternatively, in single-cell biology, unsupervised algorithms

are being used to reconstruct the relative temporal order of
samples, for example, in cellular development and differentia-
tion (11). Orderings that minimize the distance between adjacent
samples or maximize the smoothness of the trajectories con-
necting them are calculated directly from gene expression data.
For example, Oscope is designed to extract oscillatory (cell cycle)
dynamics from single-cell data (12). To do this, Oscope com-
pares every gene-by-gene pairing in the genome to identify those
that best approximate an ellipse. In addition to being computa-
tionally taxing, this approach is highly sensitive to systematic
(nonrhythmic) intersubject variation found in clinical samples.
Here, we describe a method, cyclic ordering by periodic

structure (CYCLOPS), that uses global descriptors of expression
structure, unsupervised machine learning, and evolutionary con-
servation, to order periodic data. We show CYCLOPS is robust by
analyzing legacy mouse and human data, where time is known. We

Significance

Circadian rhythms influence most aspects of physiology and
behavior. However, how do we apply this knowledge in medi-
cine? Identifyingmolecular mechanisms in humans is challenging
as existing large-scale datasets rarely include time of day. To
address this problem, we combine understanding of periodic
structure, evolutionary conservation, and unsupervised machine
learning to order unordered human biopsy data along a periodic
cycle. We show this works using orderedmouse and human data
and that it gives consistent results when applied to populations
on different continents. Then, we investigate molecular rhythms
in normal human lung and liver and cancerous liver. Finally, we
demonstrate proof of concept by finding the best time to ad-
minister a chemotherapeutic drug in an animal model.

Author contributions: R.C.A., J.B.H., and J.K. designed research; R.C.A. and L.J.F. per-
formed research; R.C.A. and J.B.H. contributed new reagents/analytic tools; R.C.A.,
L.J.F., J.B.H., and J.K. analyzed data; and R.C.A., L.J.F., J.B.H., and J.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

See Commentary on page 5069.
1To whom correspondence should be addressed. Email: ron.anafi@uphs.upenn.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1619320114/-/DCSupplemental.

5312–5317 | PNAS | May 16, 2017 | vol. 114 | no. 20 www.pnas.org/cgi/doi/10.1073/pnas.1619320114

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
31

, 2
02

1 

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1619320114&domain=pdf
mailto:ron.anafi@uphs.upenn.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619320114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619320114/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1619320114


www.manaraa.com

also demonstrate remarkably consistent results when analyzing
unordered human data from different geographical populations.
We report the cycling of hundreds of human disease genes and
drug targets. We also analyze the altered circadian function of
hepatocellular carcinoma (HCC) samples. Finally, for proof of
concept, we used this information to design a dosing scheme that
temporally segregates efficacy from toxicity for streptozocin
(STZ), a cytotoxic chemotherapeutic agent.

Results
Data generated by a common periodic process have a defined
structure. Analyzing the yeast cell cycle, Alter, Brown, and
Botstein (13) used singular value decomposition to reduce the
dimensionality of the data and identify “eigengenes,” charac-
teristic expression patterns, that span the global expression
profiles. Alter et al. recognized the first eigengenes as out-of-
phase sinusoidal oscillations. When plotted in expression space,
they form an ellipse. Importantly, this result is independent of
the annotated collection time and can be used to determine the
relative order of samples in the dataset (Fig. S1).
With human data, confounds such as genetic differences, age,

gender, exercise, diet, etc., all add significant noise and limit this
approach. Circadian and noncircadian patterns can be mixed and
distributed among the various eigengenes. CYCLOPS optimally
weights and combines the eigengenes patterns to reveal un-
derlying elliptical structure, and then uses this structure to order
the data. CYCLOPS couples our prior knowledge of rhythms in
model organisms with use of a circular node autoencoder (Fig.
S1D). Autoencoders are feedforward neural networks trained so
that the network’s output reproduces its input (14). By con-
straining the size of the intervening “bottleneck layer,” the net-
work is forced to encode the data in a reduced number of
dimensions. Here, we combine linear encoding and decoding
neurons with a circular bottleneck node (15). The outputs of the
two coupled circular bottleneck nodes represent a single angular
phase. CYCLOPS linearly projects the data and encodes it on a
simple elliptical curve (15). In this way, CYCLOPS identifies a
closed curve that best represents the characteristic expression
patterns. An angular phase represents the position of each
sample on the ellipse and its temporal phase in the reconstructed
periodic cycle. Circular autoencoders have been used to generate
nonlinear models of periodic processes in nature (16, 17). To our
knowledge, their use in ordering these data are novel.
We first applied CYCLOPS to mouse time course expression

data (1, 18). With no prior knowledge, CYCLOPS correctly or-
dered the samples from mouse liver (Fig. 1A). The circular
correlation (ρc) (19) and the circular rank correlation(ηc) (19)
between the CYCLOPS-estimated phases and true circadian
times were both greater than 0.9. CYCLOPS also ordered data
from other highly rhythmic organs (e.g., lung, kidney, and ad-
renals) but failed to correctly order data from tissues with weaker
circadian signals (e.g., skeletal muscle, cerebellum, and brain-
stem; Fig. S2). Reasoning that prior biological knowledge could
increase the signal-to-noise ratio and improve ordering, we re-
stricted the analysis to either a list of transcripts that cycled in
that tissue or a list of transcripts found to cycle in >75% of other
tissues. With this method, CYCLOPS was able to correctly order
samples for all mouse tissues (Fig. S2).
CYCLOPS was developed to analyze data without an anno-

tated order. Thus, assessing the quality of CYCLOPS orderings
when the true order is unknown is important. CYCLOPS com-
putes a quickly interpretable smoothness metric, Metsmooth, and a
more computationally intensive error statistic, Staterr, the signif-
icance of which is assessed by bootstrap. Metsmooth compares the
smoothness of the reconstructed circular trajectory in expression
space to the smoothness of a linear ordering based on the first
principal component. Staterr describes the improvement in the
residual sum of squares error when encoding the data onto a
closed, one-dimensional elliptical manifold compared with the
residual error when encoding the data onto a one-dimensional
linear manifold. In the cases where Metsmooth < 1 and Staterr

differed from background (P < 0.05), the ordering was generally
well correlated to ground truth (Fig. S2).
Next, we applied CYCLOPS to expression data derived from

human prefrontal cortex samples obtained at autopsy (10). Fol-
lowing the CYCLOPS methodology, we used evolutionary conser-
vation and knowledge of murine rhythms to sharpen the expected
circadian signature. We restricted the list of transcripts used for
temporal reconstruction to human homologs of genes found to
cycle in >75% of mouse tissues. CYCLOPS produced a high-quality
ordering (Metsmooth < 1, P < 0.05) that provides an excellent esti-
mate of time of death (TOD) (ρc = 0.68, ηc = 0.55, median absolute
error = 1.69 h) (Fig. 1B). When the expression of individual tran-
scripts is plotted as a function of either CYCLOPS phase or TOD
(Fig. 1C), CHRONO (20) was found to have the strongest circadian
cycling. Known clock genes NR1D1 and PER3 also showed clear
rhythms. More generally, transcripts that cycled as a function of
TOD also cycled as a function of CYCLOPS phase, whereas non-
rhythmic transcripts by TOD were also nonrhythmic by CYCLOPS
phase. Sinusoidal fits to CYCLOPS phase were slightly better than
sinusoidal fits to TOD (Fig. 1C). We hypothesize that CYCLOPS
better accounts for interindividual differences in circadian entrain-
ment to the terrestrial day, for example, due to shift work, biological
variation, or the poor entraining conditions of hospitals.
Then we applied CYCLOPS to biopsy data describing the

normal human pulmonary transcriptome (21). Human pulmo-
nary physiology demonstrates clear circadian rhythms. However,
to our knowledge, molecular rhythms in the human lung remain
unexamined. We confined the CYCLOPS reconstruction to
human homologs of genes that cycle in the mouse lung. We in-
dependently analyzed data from Groningen and Quebec City
(22) and used modified cosinor regression to identify transcripts
well described by a sinusoidal function of CYCLOPS phase in
both datasets (23) (Dataset S1). The phase of peak expression of
each transcript was remarkably consistent between research sites
(ρc = 0.66, median absolute discrepancy = 0.32 radians ∼1.2 h)
(Fig. 2A). Known circadian genes, including CLOCK, CRY1, and
CRY2 were periodic with phase relationships similar to those
seen in mouse (Fig. 2B).

A C

B

Fig. 1. Validation of CYCLOPS. Time course expression data from the mouse
liver (18) were encoded with CYCLOPS. (A, Left) The linear encoding is visual-
ized as a projection onto a plane where the data approximates an ellipse. (A,
Right) Sample collection phase is plotted along the horizontal axis, whereas the
CYCLOPS-estimated phase is plotted on the vertical axis. (B) Expression data
from 146 human prefrontal cortex samples (10) encoded with CYCLOPS. The
hour of death for each sample is plotted on the horizontal axis. The CYCLOPS-
derived phases are plotted on the vertical axis. Time 0 is the same as 24 and
phase 0 is the same as 2π; samples plotted near the corners of the graph are
actually “near” the diagonal line of identity. (C) Expression of select transcripts
is plotted as a function of both TOD (red) and CYCLOPS phase (blue).
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Clinically important transcripts also showed strong cycling
(Fig. 2B and Fig. S3). For example, ADAM9 is implicated in lung
cancer and is a risk marker for distant metastases (24). EFNB2, a
receptor tyrosine kinase (TK), also cycled strongly and may have
prognostic significance in both small cell lung cancer and non-
pulmonary cancers (25). We used the Drug Signatures Database
to identify rhythms in drug targets (Dataset S2) (26). Several
drug target classes in asthma treatment were rhythmic, including
β-adrenergic receptors (targeted by β-agonists) and glucocorticoid
receptors (targeted by inhaled and systemic steroids). Various TKs
cycled (e.g., MAP4K1, MAP4k3, SLK, FYN, KDR, PKN2, TAOK,
and TAOK2). Several of these are targeted in the treatment of
non–small-cell lung cancer and pulmonary fibrosis (22, 27).
Drugs used for nonrespiratory conditions that act via the

pulmonary system also target rhythmic molecules. Angiotensin-
converting enzyme (ACE) inhibitors are used in the treatment of
hypertension and heart failure. Inhibiting ACE reduces the
production of the potent vasoconstrictor Angiotensin II (28).
ACE is predominantly localized to the pulmonary and renal
vasculatures and, per CYCLOPS, demonstrates a marked diurnal
fluctuation in human lung. Night-time dosing of ACE inhibitors
improves nocturnal blood pressure control without sacrificing
daytime efficacy (29). The cycling of pulmonary ACE may provide
the underlying molecular mechanism for this findings.
To identify biological pathways and processes that show cir-

cadian coordination in the human lung, we applied phase set
enrichment analysis (PSEA) (30). As in the mouse (30), path-
ways describing cell cycle regulation, adaptive immune function,
and channel-mediated transport demonstrate phase-synchronized
expression (Fig. S4). These data are consistent with clinical evi-
dence demonstrating diurnal variation in the symptoms of asthma
(31) and the efficacy of cell cycle-targeting chemotherapeutic
agents (32). The SMAD and TGF-β pathways were among those
that demonstrated the strongest phase clustering. Both have re-
cently been highlighted in the pathogenesis of pulmonary fibrosis
and nonsmall cell lung cancer (33, 34).
Of note, temporal reconstruction with CYCLOPS did not

uniformly distribute samples across the circadian cycle (Fig. S5).
Biopsies are obtained during surgical working hours (∼6:00 AM
to 6:00 PM). However, samples obtained from shift workers
during the terrestrial day likely provide data describing the cir-
cadian night (sleep period). The phase distribution of samples is
consistent with US data that ∼15–20% of the population are shift
workers (35). Of course, the effect of shift work on local tissue
clocks remains incompletely understood. It is possible that cir-
cadian perturbations alter local molecular timekeeping in a
tissue-dependent manner, resulting in intertissue (36) or intra-
tissue (30) desynchrony.
Next, we wanted to examine circadian rhythms in a cancerous

and paired normal organ. We applied CYCLOPS to expression
data from 249 patient biopsies of noncancerous (NC) liver tissue
(37). The vast majority (n = 243) were of the “normal margin”
adjacent to tumor. Using homologs of the transcripts that cycle
in the mouse liver (1), CYCLOPS was able to order the samples

(Metsmooth < 1, P < 0.05). Core clock components showed similar
phase relationships to those observed in mouse (Fig. 3A). A full
list of transcripts and pathways found to cycle in NC human liver
are presented in (Datasets S3 and S4). Pathways describing
metabolism, lipid and cholesterol processing, and cell cycle
regulation all demonstrated strong circadian cycling.
We used data from biopsies of HCC to explore transcriptional

rhythms in an intact solid human tumor (37). HCC is the most
common primary liver cancer. We initially analyzed the HCC
data as we did the normal margin data, seeding the ordering on
the human homologs of mouse cycling genes (1). However, we
were not able to generate a quality ordering in this way. We
reasoned that HCC might compromise clock function or that the
increased interindividual variation between neoplastic samples
may have confounded CYCLOPS. To reduce the influence of
neoplastic variability and emphasize circadian variation, HCC
expression data were projected onto the eigenvectors established
by the NC samples. Applying CYCLOPS to these data produced
a high-quality fit (P < 0.05). We then used cosinor regression
analysis to identify cycling transcripts.
Surprisingly, most “core clock” components continued to cycle

in HCC samples. Notable exceptions were PER1 and CRY1 (Fig.
S6). Nearly one-half of the genes cycling in NC samples were not
well fit by cosinor regression in the HCC data. Again, we won-
dered whether this might reflect increased “noise” among HCC
samples rather than a true change in circadian expression. We
used a nested modeling approach to better distinguish these
possibilities. Pooled, ordered expression data from both HCC
and NC samples were first fit with a single (sinusoidal) model.
We then tested whether adding additional sinusoidal terms de-
pendent on histological status significantly improved fit. The
combined modeling framework allowed us to identify transcripts
that cycled in NC samples but (i) were not well fit by a sinusoidal
function when HCC samples were fit in isolation, (ii) were sig-
nificantly better fit by a nested model with different circadian
parameters for HCC and NC samples, and (iii) had at least a
twofold reduction in amplitude among HCC samples in the
pooled model (Fig. 3 B and C). Based on these combined cri-
teria, we estimate that ∼15% of the transcripts that cycled in NC
samples lost rhythmic expression in HCC.
Using DAVID (38), we identified pathways overrepresented

among genes that lost rhythmicity in HCC. In a related analysis,
we ranked all circadian genes in NC samples by the reduction of
their amplitude in HCC. The ranked list was analyzed with gene
set enrichment analysis (GSEA) (39). Reassuringly, these anal-
yses yielded overlapping results (Table S1). There was temporal
deregulation of key circadian outputs including overlapping ap-
optotic pathways and JAK–STAT signaling. We also find evi-
dence for reduced cycling among transcripts related to hypoxia
and redox metabolism. Of note was loss of rhythmicity in TKs
targeted by several latest-generation antineoplastic agents. Also
notable was a loss of cycling in ARNTL2, which has been im-
plicated in several neoplastic diseases (40, 41).

A B
Fig. 2. CYCLOPS analysis of circadian transcriptome
in human lung. Using independent biopsy data sets
(21) from the University of Groningen (GRNG) (Groningen,
The Netherlands) and the University of Laval
(Quebec City, QC, Canada), we used CYCLOPS to
generate two reconstructions of the circadian
transcriptome in the human lung. Modified cosinor
regression was then used to identify cycling tran-
scripts. (A) Results from the transcripts found to cycle
in both datasets are shown. For each transcript, the
acrophase in the Laval dataset is plotted against the
transcript acrophase as determined from the Groningen
data. (B) CYCLOPS-ordered expression data from
Groningen and Quebec City are plotted in blue and
green, respectively.
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Chronotherapy is an immediate area of interest for clinical
translation. Earlier, we proposed that drugs that target rhythmic,
high-amplitude gene products represent a path for mechanism-
driven chronotherapy. With CYCLOPS, we can now identify
drug targets that oscillate in humans. Among the many transcripts
with high-amplitude oscillations in normal human liver was
SLC2A2 (Fig. 4A). Murine Slc2a2 cycles with similar temporal
phasing in both the liver and kidney (1). SLC2A2 encodes GLUT2,
a glucose transporter highly expressed in pancreas, liver, and kid-
ney. STZ is a GLUT2 substrate and is standard of care in patients
with locally advanced pancreatic neuroendocrine tumors (pNETs)
(42). Although pNETS are rare, the incidence has nearly doubled
in the last decades (43). STZ is cytotoxic to GLUT2-expressing
cells, including islet cells and pNETS, with renal and hepatic tox-
icity being dose-limiting and potentially lethal (42).
As STZ has a remarkably short half-life (<15 min), it is an

excellent candidate for chronotherapy. We reasoned dosing STZ
during the nadir of hepatic SLC2A2 abundance could preserve
STZ efficacy while minimizing renal and hepatic toxicity. The
same dose of STZ was administered in the morning [Zeitgeber
time (ZT) 0] or evening (ZT 12) to DBA/2J mice (44) for
5 consecutive days. We measured blood glucose levels as a sur-
rogate marker for the efficacy of STZ in killing islet cells. Body
weight was used as a simple measure of animal health and gross
toxicity. Mice treated with STZ at either time were equally sus-
ceptible to hyperglycemia (Fig. 4B). However, mice administered
STZ in the morning, when Slc2a2 transcript expression is low
and GLUT2 protein abundance is high (1, 45), had a much
greater loss in body mass compared with mice receiving STZ in
the evening (−19.8 g vs. –12.9 g, P = 0.015). Thus, we temporally
separated apparent efficacy (hyperglycemia) from toxicity (loss
of body weight).

Discussion
Much of the molecular mechanics underlying circadian rhythms
has been revealed in the last two decades. Much less progress has
been made in converting these findings into actionable clinical
knowledge. The lack of human time course data has presented a
key barrier to translation. CYCLOPS aims to address this de-
ficiency, using global descriptors of gene expression, evolutionary
conservation, and machine learning to order unordered data
within a periodic cycle. CYCLOPS builds on the foundation of
Alter et al. (13) and the computational structure of Kirby and
Miranda (15) to order high-throughput data and identify latent
periodic oscillations in transcription. We validated CYCLOPS
using ordered mouse and human data. We also demonstrated the
consistency of CYCLOPS using human lung data from two dis-
tinct patient populations on separate continents.
CYCLOPS has advantages and disadvantages compared with

existing methods. Supervised methods (e.g., ZeitZeiger) con-
tinue to improve but require time course training data. Obtaining
blood and skin samples is straightforward. Serial biopsies of in-
ternal human organs are not practical. Unsupervised methods,
like Oscope, have recovered cell cycle rhythms from unordered
single-cell data. However, Oscope works on the single transcript
level and requires thousands more computations than does
CYCLOPS. Furthermore, Oscope is highly sensitive to the inter-
subject variability inherent to human data. Supervised methods are
tissue specific and are similarly sensitive to biologic variability (as
might be expected in cancer), as they have been optimized to use
only a small number of highly informative transcripts. CYCLOPS
uses global descriptors of expression structure, making it both
robust and efficient for population-based human data. However,
as with other high-dimensional bioinformatics methods, the particular

A B D

C

Fig. 3. CYCLOPS analysis of noncancerous (NC) and cancerous (HCC) human liver. Expression data from biopsy-derived NC tissue was processed using CYCLOPS.
(A) Reconstructed expression profiles of selected clock genes are plotted as a function of CYCLOPS phase. Expression data from samples with HCC were projected
onto the eigenvectors established in the NC samples before CYCLOPS ordering. (B) Histogram of circadian amplitude differences between NC and HCC samples. A
long tail, highlighted in yellow, shows transcripts with reduced amplitude in HCC. (C) A scatter plot compares the statistical significance of testing for a change in
mean expression (Mann–Whitney test) with the statistical significance of testing for a circadian expression change. (D) Expression of selected genes as a function
of CYCLOPS phase in both NC (black) and HCC (red) samples.
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data normalization scheme and descriptors of expression struc-
ture used can influence the final results.
CYCLOPS also has several limitations. It requires data from the

entire periodic cycle to form an ellipse. Biopsies are almost ex-
clusively obtained during the day. A large patient population, in-
cluding shift workers, is necessary to fill in underrepresented times
of day. Our experience suggests that >250 samples are required to
order biopsy samples (Table S2). We also leveraged evolutionary
conservation and mouse data to focus the genes used for human
temporal reconstruction. CYCLOPS does not require that rhythms
in mice and men are identical but does assume that the human
homologs of mouse cycling genes are more likely to cycle. Im-
portantly, CYCLOPS identifies features that are consistent with
oscillations with respect to a latent variable, assumed to be time.
Several findings lend confidence to our reconstructions. First, we
recovered oscillations consistent with known circadian biology (e.g.,
phase relationships of core clock genes). We also recovered sample
collection phases consistent with biopsy collection times and
smooth orderings that well explain the data. CYCLOPS orderings
are also relative. Additional information is needed to assign a
circadian time to any particular CYCLOPS phase. In ordering the
human lung and liver transcriptomes, we used the average acrop-
hase of the PAR bZip transcription factors to fix time “π.” In the
lung and liver of nocturnal mice, these factors show peak expres-
sion near ZT12 (1), the beginning of the peak activity period.
Circadian rhythms persist in the absence of environmental

cues. The observation of rhythms under normal conditions is not
sufficient to classify a rhythm as circadian. Pending further study,
the human transcriptional oscillations identified by CYCLOPS
are more properly labeled as diurnal.
A final caveat lies in the identification of periodic transcripts

from CYCLOPS-ordered data. Regression and other rhythm
detection methods are predicated on time as a variable independent
of expression. CYCLOPS phases are derived from gene expression.
As a result, standard statistical significance tests tend to be too

liberal. To mitigate this concern, we have imposed an unusually
strict numerical cutoff for statistical significance. We also require
cycling with sufficient amplitude to suggest physiologic importance.
Despite these limitations, we have successfully used CYCLOPS to

explore diurnal rhythms in human lung, liver, and HCC. Our anal-
yses of normal lung and liver present clear translational opportuni-
ties. We found strong circadian cycling of the cell cycle and immune
pathways in human lung. ACE, well expressed in the pulmonary
vasculature and a key drug target for hypertension, appeared
rhythmic. We also found cycling in members of the SMADs and the
JAK–STAT pathways along with various TKs, many of which are
important targets in idiopathic pulmonary fibrosis.
In liver, PPARA, DDC, and XDH, targets of the fibrates, do-

pamine decarboxylase inhibitors, and xanthine oxidase inhibitors,
respectively, all display high-amplitude rhythms (Fig. S7). SLC2A2,
the target of STZ, also displayed strong cycling in human liver. In a
proof-of-concept experiment, we leveraged these data to time STZ
administration and segregate gross toxicity from efficacy. In sum,
this approach presents a straightforward path from genome-scale
human data to hypothesis-driven opportunities in chronotherapy.
An important aspect of chronotherapy is the accurate circa-

dian assessment or “phasing” individual patients. However, how
accurate must this be? The answer likely depends on the kinetics
of the drug and the dynamics of its target. For STZ and other
fast-acting drugs that target molecules with high-amplitude
rhythms, there may be a broad window of acceptable dosing
times. For other drugs, more temporal precision might be required.
CYCLOPS is an algorithm that temporally reconstructs population-

based human organ data. Applying CYCLOPS to over 2,000 human
samples, we observe clear, high-amplitude molecular rhythms in lung,
liver, brain, and HCC. Despite disparities in patient age, gender, ge-
netics, diet, and environment, CYCLOPS extracted significant peri-
odic signatures. For a large subset of genes, circadian variability in
expression was larger than the variability attributable to these aggre-
gated genetic and environmental variables. By implication, circadian
control may offer a powerful tool for precision medicine.
Finally, we investigated the state of circadian rhythms in a

human cancer, HCC. The circadian clock is believed to gate the
cell cycle. In HCC, we find that, despite continued oscillator
function, there is circadian deregulation of JAK–STAT, apo-
ptotic, and metabolic pathways. To catalyze the further pursuit of
translational chronobiology, we have posted the CYCLOPS
program and associated scripts on GitHub. We hope this and
related approaches will propel investigation into the role of
circadian biology in clinical medicine.

Methods
All animal studies were done under Charles River Laboratories study number
20091523under Institutional Animal Care andUse Committee protocol P01182016A.

Microarray Processing. CEL files containing raw data were downloaded from
NIH GEO and processed with RMA in R (version 3.2.3) Bioconductor.

Computational Methods. The CYCLOPS autoencoder and downstream analysis
were implemented in Julia 0.3.10. The associated files are available for
download on GitHub.

Data Scaling and Normalization. For temporal reconstruction, we first re-
stricted the list of probes used to the top 10,000 highest expressed probes (as
sorted by mean probe value). For each probe, we impute extreme expression
values at the top/bottom 2.5th percentile. The expression Xi,j of each probe i
in sample j was scaled as follows:

Si,j =

�
Xi,j −Mi,j

�
Mi

,

where Mi is the mean expression of probe i across samples: Mi = ð1=NjÞ
P

jXi,j.
The Si,j data were expressed in eigengene coordinates Ei,j following the

methods of Alter et al. The number of eigengenes NE (singular values)
retained was set so as to preserve 85% of the variance of the data. The
autoencoder was applied to these characteristic expression patterns for the
purposes of temporal reconstruction.

π 2π

A C

B

D

Fig. 4. Prospective chronotherapy for streptozocin (STZ). STZ is a cytotoxic
agent used to treat pancreatic neuroendocrine tumors. STZ is actively
transported into cells by the protein product of SLC2A2 and is associated
with renal and hepatic toxicity. (A) The expression of Slc2a2 in mouse kidney
and liver (1) is plotted as a function of circadian time. (B) Expression of SLC2A2
in human liver samples is plotted as a function of CYCLOPS phase. (C) Eleven-
week-old male mice were dosed with STZ (green and purple) or saline (blue
and red) at 7:00 AM (blue and green) or 7:00 PM (red and purple). Dosing time
did not significantly impact the induction of hyperglycemia and expected
treatment efficacy. (D) Body weight was used as a measure of gross toxicity.
There was less weight loss among mice administered STZ at 7:00 PM.
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CYCLOPS Autoencoder. The activated value of neuron j in layer l is denoted by
alj and for linear neurons is given by alj =

P
kw

l
j,ka

l−1
k +   bl

j, where weight from
the kth neuron in layer l − 1 to the jth neuron in layer l is represented bywl

j,k.
The bias in jth neuron in layer l is denoted bl

j (46).
A single, circular node was used in the bottleneck layer. The single circular

neuron was implemented as two coupled neurons (15). The preactivation
values of these neurons ol

j and ol
j* are given by the following:

ol
j =
X
k

wl
j,ka

l−1
k +   bl

j   o
l
j* =

X
k

wl
j*,ka

l−1
k +   bl

j*.

Activated values are obtained by mapping these onto the unit circle:

alj =
ol
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

ol
j

�2
+
�
ol
j*

�2r alj* =
ol
j*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

ol
j

�2
+
�
ol
j*

�2r   ,

with phase

  θj = tan−1

 
alj*
.
alj

!
.

NE linear neurons were used in both the encoding and decoding steps.
The autoencoder was trained by backpropagation using stochastic batch

gradient descent with momentum (46). Default training parameters were
set as set batch size = 10, rate = 0.3, and momentum = 0.5.

Training is repeated multiple times (default = 40) starting at different,
randomly set initial weighting conditions. The result with minimal sum of
squares output error is used.

The fully trained autoencoder was used to encode the characteristic ex-
pression data Ei,j. The value of the circular node assigned each sample j (∅jÞ
was the phase assigned to that sample.

The same autoencoder training parameters were used for all
reconstructions.

Additional methodological details can be found in SI Methods.
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